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ABSTRACT

Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element

modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity fac-

tors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth.

Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was

predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the

uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal

deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation

life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and

fatigue crack growth theories.

INTRODUCTION

Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high

reliability. However, unexpected gear failures may occur even with adequate tooth design (Couchan, et al., 1993). In

order to design an extremely safe system, the designer must ask and address the question "what happens when a

failure occurs." With regards to gear tooth bending fatigue, tooth or rim fractures may occur. A crack which propa-

gates through a rim would be catastrophic, leading to disengagement of a rotor or propeller, loss of an aircraft, and

possible fatalities (McFadden, 1985, Albrecht, 1988). This failure mode should be avoided. A crack which propa-

gates through a tooth itself may or may not be catastrophic, depending on the design and operating conditions. Also,

early warning of this failure mode may be possible due to advances in modern diagnostic systems (Kershner, et al.,
1997).

One concept proposed to address bending fatigue fracture from a safety aspect is a split-tooth gear design

(Drago, et al., 1997). The prime objective of the split-tooth design is to control crack propagation in a desired direc-

tion such that at least half of the tooth remains operational should a bending failure occur. However, the split-tooth

design should have the same weight, performance, and reliability characteristics as a conventional single-tooth

design. Finite element models were developed to evaluate candidate split-tooth designs. These designs incorporated

grooves through the center of the tooth face widths to 'split' the teeth. Stress, strength, durability, and sliding veloc-

ity studies were performed to demonstrate the feasibility of such a design.

The objective of the current study is to analytically validate the crack propagation failsafe characteristics of a

split-tooth gear. A specially developed three-dimensional crack analysis program was used which was based on

boundary element modeling and principles of linear elastic fracture mechanics. The effect of the location of initial

cracks on crack propagation was evaluated. Crack growth simulation was performed on a case study to evaluate

crack propagation paths. Predicted crack shapes as well as crack propagation life are presented based on calculated

stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
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I. ANALYSIS

A. PreviousFiniteElementModeling

Aninitialstudywasconductedtodeterminethefeasibilityofasplit-toothdesign(Drago,etal.,1997).Here,
analyticalmodelingwasperformedonaproposedgrooveddesignforthesungearofacommercialhelicopterplan-
etarysystem.Themodelwasconstructedandanalyzedusingcommercialavailablefiniteelementmodelingtools
(P3/Patran,1993,MacNeal,1981).Themodelwasthreedimensionalandconsistedprimarilyof8-nodehexele-
mentswithalimitednumberof6-nodewedgeelements(fig.1).Themodelhadatotalnumberof24,248elements
and30,900nodesandusedmultipointconstraintboundaryconditionstomodelthebearingsupports.Themeshwas
refinedforfouroftheteethforimprovedstresspredictionaccuracy.

Thepurposeofthesplit-toothdesignwastocontrolcrackpropagationinadesireddirectionsuchthatatleast
halfofthegearfacewidthremainsoperationalshouldafailureoccur.Thiswasimplementedbyintroducinga
groovethroughthecenterofthefacewidthoftheexistingconfiguration.IntheinitialDragostudy,variousgroove
widthsanddepthswereanalyzedtodeterminetheoptimizedconfiguration.A detailedstressanalysisofthetooth
filletsandgrooveswasrequiredtoproduceastronggear,rim,web,andhubsystemforhigh-loadhelicopterapplica-
tions.Thestudyshowedthefeasibilityofsuchasplit-toothdesignandsubsequentexperimentaltestsareplannedfor
thefuture.Thetestswilluseasingle-toothbendingfatiguespecimenandapparatusasdescribedbyLemanski,etal.
(1969).Duetothis,thecrackpropagationstudiesinthecurrentworkwillmodelthesingle-toothbendingfatigue
testgear.

B. ModeloftheSingleToothBendingFatigueGear

Asplit-toothdesignwasdevelopedforfuturetestsinanonrotatingsingle-toothbendingfatiguetestfixture.The
testfixtureloadsatooth(orinthiscase,thetwosplitteeth)onthetestgearatthehighestpointofsingletoothcon-
tactthroughaloadanvil.Theloadanvilisconnectedtoauniversalfatiguemachinewhichdeliversasteadyand
alternatingforce.Loadistransferredthroughthetestgearandreactedbyareactionanvilatalocationapproximately
135°fromtheloadedtooth.Thetestgearhas32teeth,4.763module(5.333diametralpitch),25°pressureangle,
15.24cm(6.000in.)pitchdiameter,and0.95cm(0.375in.)facewidthpertooth.Aboundaryelementmodelofa
split-toothdesignofanuncrackedsingle-toothbendingfatiguetestgearisshowninfigure2.Notethatfourseriesof
foursuccessiveteethareremovedfromthetestgeartoallowinstallationinthetestfixture.Thecompletegear,rim,
andwebassemblywasmodeledaswellasremovaloftheappropriateteeth.

Themeshintheregionoftheloadedteeth(aswellasthelocationsoftheinitialcracks)wasrefinedfor
improvedstresspredictionaccuracy.Themodelshowninfigure2had1816elements(both4-nodequadrilateraland
3-nodetriangular)and1479nodes.Thematerialpropertiesusedwerethatofsteel(modulusofelasticity=207GPa
(30x106psi),Poisson'sratio=0.3).Anappliedpressurealongnarrowpatchesontwosplitteethatthelocationof
thehighestpointofsingletoothcontactsimulatedatoothloadnormalforceof24,541N(5,517lb)pertooth.Dis-
placementsonthereactionteethaswellashalfoftheinnerhubdiameterwereconstrainedtozerotomodelthereac-
tionanvilandhubsupportbearing.

C. FractureAnalysisModelingCode

TheFranc3d(FractureAnalysisCodefor3Dimensions,Wawrzynek,1991)computercodewasusedforcrack
simulation.ThisprogramwasdevelopedatCornellUniversityandanexecutableversionisopenlyavailabletothe
public.Crackgrowthsimulationisthemainfeatureoftheprogram.Theprogramusesboundaryelementmodeling
andprinciplesoflinearelasticfracturemechanicstoanalyzecrackedstructures.Thegeometryofthree-dimensional
structureswithnonplanar,arbitraryshapedcrackscanbemodeled.Thesimulationprocessiscontrolledbytheuser
throughagraphicaluserinterfacewhichincludeswindowsforthedisplayofthestructureaswellasamenu/dialog-
boxsystemforinteractingwiththeprogram.

Themodelingofathree-dimensionalcrackedstructureisactuallyperformedthroughaseriesofprograms
developedatCornellUniversity.First,thestructuregeometrygridpointdatais importedtoasolidmodelerpro-
gram.Here,appropriatecurvesandfaces(orpatches)arecreatedfromthegriddataaswellasaclosed-loopsurface
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geometrymodel. This surface model is then imported to the Franc3d program for boundary element model prepara-

tion. The user can then mesh the geometry model using 3 or 6 node triangular surface elements, or 4 or 8 node

quadrilateral elements. Boundary conditions (applied tractions and prescribed displacements) are applied on the

model geometry over faces, edges, or points. Initial cracks such as elliptical or penny shaped can be inserted in the

structure. After complete formulation, the model is shipped to a boundary element equation solver program. Once

the displacement and traction unknowns are solved, the results are exported back to the Franc3d program for post

processing.

II. RESULTS AND DISCUSSION

A. Stress Analysis of an Uncracked Gear

The purpose of the stress analysis of an tmcracked gear was: (1) to validate the mesh refinement for the loaded

teeth, and (2) to compare the boundary element analysis results with previous Boeing Helicopter finite element

analysis results. Previous studies have shown that accurate stress intensity factor predictions, and thus, accurate

crack path predictions, were obtained if the initial mesh without a crack produced accurate estimates of the maxi-

mum stresses (Lewicki, 1995). The exaggerated deformation of an uncracked gear under load is shown in figure 3.

As expected, the majority of the deflection was in the loaded teeth. The magnitude of the maximum deflection was

0.218 mm (0.0086 in.) at the tip of the loaded teeth. In addition, there was slight rotation about the gear rotational

axis. Also, there was slight separation of the loaded teeth (best seen in the front view) and the deflection was sym-

metric with respect to the groove.

The element-averaged tooth fillet stress distribution is shown in figure 4. For these results, an equal pressure

was applied to both the left and right teeth. However, the area of the applied load on the left tooth was about

1 percent greater than the right due to round off errors in the model formulation. Thus, the magnitude of the stresses

on the left tooth was 1 percent greater than the right tooth. The maximum value of the maximum principle stress was

1213 MPa (176) ksi. This occurred on the left tooth at the center of the face width and at an angle approximately 40 °

with respect to the tooth centerline. As with the deflections, the stress distribution was symmetrical with respect to

the groove. Finally, the overall stress distribution using the boundary element analysis was similar to that of the

Boeing finite element model.

B. Effect of Initial Crack Location

The effect of the location of initial cracks on mode I stress intensity factors were analyzed for a variety of crack

locations in the tooth fillet. Four initial cracks were analyzed, one at a time, with the same load and boundary condi-

tions as previously described. Figure 5 shows the detailed boundary element mesh for initial crack 1. Figure 6 shows

the mode I stress analysis factors for all four initial cracks. The stress intensity factors were determined as a function

of position along the cracks front based on the calculated deflections using the method of Tracey (1977). All four

initial cracks had the same shape, size, and orientation. They were all half-ellipse cracks with a width of 0.254 cm

(0.100 in.), a depth of 0.127 cm (0.050 in.), and an orientation normal to the tooth fillet surface. Cracks 1 and 2 were

on the left tooth biased toward the front and rear, respectively, while cracks 3 and 4 were on the right tooth biased

toward the front and rear, respectively. For figure 6, the normalized position along the crack front starts with a value

of zero at a position on the crack front toward the front of the tooth, then to a value of one following movement in

the positive x-direction. The stress intensity factor versus position curves were similar for all four initial crack con-

ditions. The stress intensity factors were greater near the ends of the crack front compared to the center. This indi-

cated that the crack would grow along the tooth face width at a greater rate than through the tooth. In addition, based

on the magnitude of the calculated stress intensity factors, a crack in a gear made of AISI 9310 steel material would

grow in fatigue when subjected to the modeled geometry, load, and boundary conditions. This statement is based on

data by Forman and Hu (1984), where they publish a stress intensity factor threshold of 3.2 MPa._/m (3.5 ksi._/in.)

and a fracture toughness value of 182 MPa._/m (200 ksi._/in.) for AISI 9310 steel.

Figure 7 shows the effect of location for two initial root cracks on the right tooth. Crack 5 is in the center of the

root at the forward edge of the face width while crack 6 is at the center of the face width. Crack 5 is a quarter-

ellipse crack while crack 6 is a half-ellipse crack. As with the fillet initial cracks, crack 6 had a width of 0.254 cm
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(0.100in.)andadepthof0.127cm(0.050in.).Again,anincreaseinthenormalizedcrackfrontpositionfollowed
movementin thepositivex-direction.Crack5hadawidthof0.127cm(0.050in.)andadepthof0.127cm
(0.050in.).Rootcrack6hadasimilarstressintensityfactordistributionalongthecrackfrontasthefilletcracksof
figure6.However,theoverallmagnitudeswerelowerthanthefilletcracksduetothedecreaseofthemagnitudeof
thetensilestressfieldintherootcomparedtothefillet.Crack5hadagreaterstressintensityfactormagnitudewhere
thecrackfrontintersectedthetoothrootcomparedtowherethecrackfrontintersectedtosideflankofthetooth.
Thisalsoindicatedthatthecrackwouldgrowalongthetoothwidthgreaterthanitwouldtunnelthroughthetooth.

Figure8showstheeffectoflocationforthreeinitialcracksinthegrooveofthegear.Hereanincreaseinthe
normalizedpositionalongthecrackfrontfollowsmovementinthepositivez-direction.Initialcrack7wasabout
0.08cm(0.031in.)belowtheroot,crack8wasabout0.037cm(0.144in.)belowtheroot,andcrack9wasabout
0.80cm(0.315in.)belowtheroot.All threecrackshadawidthof0.254cm(0.100in.),adepthof0.127cm
(0.050in.),andanorientationnormaltothegroovesurface.Thestressintensityfactorsweregreatestforthecrack
nearestthefilletandrootsurface,again,sincethiswasthelocationofthehighertensilestressfield.Thestress
intensityfactorsdecreasedasthecracklocationwasdeeperintothetoothgroove.Basedonthemagnitudeofthe
mode I stress intensity factors, fatigue crack growth would still occur but at a rather low rate.

C. Propagation Path Study

The previously described initial crack 1 (fig. 5) was used for a crack growth simulation study. The procedure

used to grow a crack was as follows. After initial crack 1 was inserted in the model, the mode I and mode II stress

intensity factors were determined at 24 points along the crack front (mode I shown in fig. 6). The extended crack

directions at these 24 points were determined using the ratio of mode II stress intensity factors to mode I and the

mixed mode interaction theory of Erdogan and Sih (1963). The amount of crack extension at these points were

determined based on the Paris crack growth relationship (Paris and Erdogen, 1963) where

Kl,i )n

ai = amax / K--_"-/
_ l,max J

where a i is the extension of the ith point, K1,i is the mode I stress intensity factor of the ith point, Kl,ma x is the value
of the largest stress intensity factor along the crack front, areax is the maximum crack extension which is specified

by the user, and n is the Paris exponent. The maximum extension size, amax, was set at 0.13 cm (0.050 in.). The
Paris exponent, n, was set at 2.954 based on material tests for AISI 9310 steel by Au and Ke (1981) and gear analy-

sis and tests by Lewicki (1995). Using this procedure, a new crack front was produced with a nonplanar crack exten-

sion. A third-order polynomial was then used to model the extended crack front. The new crack geometry was then

remeshed. After remeshing, the model was rerun and solved for displacements, stress intensity factors, and crack

propagation directions. The above procedure was repeated a number of times to simulate crack growth in the gear
tooth.

Figure 9 shows the extended crack geometry and mesh after two steps. Note that the maximum extension

occurred at the trailing end of the crack front. At the leading end of the crack front, the crack extended to the tooth

front flank. Figure 10 shows the extended crack after five calculation steps. By this time, the crack extended to the

rear flank of the left tooth. After this, the crack propagated uniformly through the tooth face width. Figure 11 shows

an exploded view of the tooth and crack after 15 propagation steps. As seen from the figure, the predicted failure is

tooth fracture rather than rim fracture. From a failsafe aspect, this is the desired mode of failure.

With regards to tooth stiftness, the tooth compliance increased as the crack grew in size. This resulted in an

increased deflection of the cracked tooth compared to the uncracked tooth for the same tooth load. This would prob-

ably not be the case during actual operation of a split-tooth design if one tooth of a driving gear was cracked and

driving an tmcracked driven gear. The mesh of the tmcracked tooth would carry more load than the mesh of the

cracked tooth. A contact analysis algorithm is needed to truly solve this complicated problem. The Franc3d software

does not, unfortunately, have such an analysis capability and a manual approximation was used instead.

For each step during the crack growth simulation process, two runs at a given crack size were performed. The

first was with equal applied loads on the cracked and uncracked tooth. The second was with adjusted loads to

produced equal deflections for the cracked and uncracked teeth at a point on the tip of the loaded teeth at the center
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ofthefacewidth.Thesecondsetofcaseswasaccomplishedthroughtrialanderrorbasedonthetrendingofthe
equalloadscaseandadjustingtheappliedloadsuntilthecalculateddeflections(fromtheboundaryelement
analysis)ofthecrackanduncrackedteethwerewithin1percentofeachother.

TableI givestheresultsofthedeflectionsandtheloadsfromtheanalysis.Afterfivesteps(crackareaof
0.263cm2(0.041in.2)),thecracked-toothdeflectionwas14percentgreaterthantheuncracked-toothdeflectionfor
thesameappliedloadoneach.After15steps(crackareaof 1.039cm2(0.161in.2)),thecracked-toothdeflection
was220percentgreaterthanthatoftheuncrackedtooth.Figure12depictstheappliedloadasafunctionofcrack
areafortheconstraintofequaltoothdeflections.Notethatatacrackareaof 1.039cm2(0.161in.2),theappliedload
ontheuncrackedtoothisalmostfivetimesthatofthecrackedtooth.Thisresultingoverloadontheuncrackedtooth
needstobeconsideredinthefailsafedesignofsplit-toothconfiguration.

Finally,thepredictednumberof cyclesduringthecrackgrowthsimulationwasestimated.ThemodeI stress
intensityfactorsasafunctionofthecrackfrontpositionforvariousstepsaregivenin figure13.Thenumbersonthe
curvescorrelatetothestepnumber.Again,notetheincreaseinthevaluesofthestressintensityfactorsattheedges
ofthecrackfrontfortheinitialsteps.Thisimpliedthatthecrackgrewin thetoothfacewidthdirectionatagreater
ratethenthroughthetooth.Athigherstepsizes,thestressintensityfactorswheremoreuniformalongthefacewidth
indicatinguniformcrackextension.Themaximumvalueofthestressintensityfactorsalongagivencrackfrontfora
givencracksizeisshownin figure14asafunctionofcrackarea.ThiswasusedinthePariscrackgrowththeory
(ParisandErdogen,1963)where

da C( AK in
-_= \ 11

where da is the crack extension distance for dN number of cycles, C = 8.433.10 9, and n = 2.954 for AISI 9310 steel

material from Au and Ke (1981). Using the Paris theory, a typical life prediction for a cracked structure would

exhibit an exponential decrease in the number of cycles as a crack would grow at a given applied load. This is due to

the increase in the mode I stress intensity factor with crack size, and rims, decreased life. However, since the load on

the uncracked tooth was adjusted for equal deflections (i.e., decreased as the crack grew in size), the stress intensity

factors were nearly constant as the crack grew in size. This resulted in a rather linear increase in cycles with crack

area after an initial growth at the start of the propagation simulation.

CONCLUSIONS

Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element

modeling and linear elastic fracture mechanics. The following conclusions were made: Initial cracks in the fillet of

the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in

the root or groove areas of the teeth. Tooth fracture was predicted from the crack growth simulation for an initial

crack in the tooth fillet region. This was the desired failure mode for an ultra-safe design. Tooth loads on the

uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal
deflections of the cracked and uncracked teeth were considered. The effect of tiffs needs to be considered in the

design of a split-tooth configuration.
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TABLE I. CALCULATED DEFLECTIONS FOR EQUAL LOADS AND LOADS FOR EQUAL DEFLECTIONS

Crack area,

cm 2 Load on Cracked

each tooth

tooth, KN deflection
nlnl

0.014 25,108 0.214

0.052 25,108 0.215

0.099 25,108 0.220

0.131 25,108 0.224

0.165 25,108 0.228

0.263 25,108 0.242

0.298 25,108 0.249

0.356 25,108 0.261

0.423 25,108 0.276

0.506 25,108 0.299

0.597 25,108 0.327

0.686 25,108 0.361

0.768 25,108 0.402

0.857 25,108 0.469

0.951 25,108 0.554

1.039 25,108 0.680

Equal loads Equal deflections

Uncracked Difference in

tooth deflections,

deflection, percent
nlnl

0.212 0.9

0.213 0.9

0.212 3.8

0.212 5.7

0.212 7.5

0.212 14.2

0.212 17.5

0.213 22.5

0.213 29.6

0.212 41.0

0.212 54.2

0.212 70.3

0.211 90.5

0.211 122.3

0.212 161.3

0.212 220.8

Load on Cracked

cracked tooth

tooth, KN deflection
nlnl

25,108 0.214

24,950 0.215

24,207 0.216

24,009 0.218

23,788 0.221

22,473 0.227

21,730 0.229

20,758 0.233

19,765 0.239

18,420 0.246

16,960 0.253

15,292 0.259

13,884 0.266

12,132 0.277

10,434 0.286

8,621 0.294

Load on Uncracked Diffeience in

uncracked tooth deflections,

tooth, KN deflection, percent
nlnl

25,108 0.214 0.0

25,266 0.213 0.9

26,009 0.217 33.5

26,207 0.217 0.5

26,428 0.218 1A

27,743 0.225 0.9

28,486 0.229 0.0

29,458 0.234 33.4

30,451 0.239 0.0

31,796 0.245 0A

33,256 0.252 0A

34,924 0.261 33.8

36,332 0.268 33.7

38,084 0.277 0.0

39,782 0.287 33.3

41,595 0.297 1.0
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Figure 1. Finite element model of split-tooth

gear configuration (Drago, et al., 1997).
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Figure 2. Boundary element model of a
split-tooth bending fatigue test gear.
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a) Isometric view. b) Front view.
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Figure 3. Boundary element model

deflections of an uncracked split-tooth

bending fatigue test gear.

Figure 4. Fillet stresses from the boundary

element model of an uncracked split-tooth
bending fatigue test gear.
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Figure 6. Effect of initial crack location on
mode I stress intensity factors; tooth fillet
locations.
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Figure 7. Effect of initial crack location on
mode I stress intensity factors; tooth root
locations.

Figure 8. Effect of initial crack location on
mode I stress intensity factors; tooth
groove locations.
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Figure 9. Predicted crack extension for

initial crack 1 case study after two steps.

Figure 10. Predicted crack extension for

initial crack 1 case study after five steps.
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Figure 11. Exploded gear tooth view of
predicted crack growth after 15 steps.

Figure 12. Calculated tooth loads for equal
deflections.
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for crack growth simulation study.
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